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The crux of our method, Lie canonical perturbation
theory, abbreviated as LCPT, is a classical version of
Van Vleck perturbation theory. These theories a pri-
ort assume existence of M invariants of motion for the
M-dimensional Hamiltonian systems in question. It is
well known that with such methods, the new, trans-
formed Hamiltonian diverges if the system encounters
(near-)resonances, and becomes meaningless. However,
we clarify in this work that LCPT is still powerful enough
to reveal an invariant manifold even if almost action vari-
ables fail to maintain constants of motion. Rather, the
method provides us with a new phase-space dividing sur-
face free from recrossing up to moderately high energy.
We briefly describe our method to construct a model
Hamiltonian from any arbitrary autonomous Hamilto-
nian to which LCPT applies. We use an efficient tech-
nique, so-called algebraic quantization, to carry out the
LCPT without any special mathematical manipulations
and achieve a reformulated (classical) transition state
theory by using the hyperbolic phase space orbit in the
sea of chaotic motions of the other stable modes. At the
end, we describe shortly three distinct levels of local dy-
namics in the transition state in terms of regularity of
the dynamics, which have not been addressed previously.

APPENDIX A: LIE CANONICAL
PERTURBATION THEORY (LCPT)

Canonical perturbation theories (1) transform (p,q)
to a new (P, q) coordinate system so as to make the
new Hamiltonian H (P, @) as close to integrable as possi-
ble. Lie canonical perturbation theory (LCPT) (1-7) is
the most sophisticated theory among them, applicable to
implementing higher-order perturbations and to treating
systems with many degrees of freedom. The LCPT is
based on Lie transforms, that is, the exponential of a Lie
operator induces a canonical transformation: let L, be
the Lie operator associated with a generating function w,

Ly ={w,}

where {} denotes the Poisson bracket. Then the trans-
formation of an autonomous Hamiltonian H to a new
Hamiltonian H,

H(p,q) — H(p,q) = exp(Lw)H (P, q)

is canonical. We let H be an M-dimensional Hamiltonian
expandable in ¢ (=strength of the perturbation) where

(A1)

(A2)

the zeroth-order Hamiltonian Hy 1s assumed to be inte-
grable, e.g., a system of M harmonic oscillators. Such a
zero-order system is a function of action variables J only,
and does not depend on the conjugate angle variables @,
S0

H(p,a) = > " Hu(p,q), (A3)
= Ho(J)+ Y _€"Hu(3,0), (A4)
= > wrdkt+ Y €"Ha(3,0), (A5)

where wy 18 the fundamental frequency of the kth mode
of Hy. Assuming the new Hamiltonian [/ and the gener-
ating function w are also expandable in €, we substitute
all H, H, and w to Eq. A2 and determine the new Hamil-
tonian, at each order in ¢, to be as a simple a form as
possible by eliminating its dependencies on the new an-
gle variables ®. (1,3, 7) If the H is obtained free from
the angle @ (at the order of the perturbative calculation
performed):

(A6)

the new action and angle variables for the kth mode are
expressed as

% = Jp = _356(3) =0, (A7)

Ji = constant (k=1,2,3,..., M), (AR)
and

Ok = 35 J(:) = w(3) = constant, (A9)

Ok = wr(I)t + Br, (A10)

where (5 is the arbitrary initial phase factor of the kth
mode. From there, the equations of motion with respect
to the new coordinates @ and momenta p are obtained
from the Hamiltonian equations of motion obeying H ;

Ge(p,q) | o

% + @i qe(p,a) =0, (A11)
and

~ wr dgr(p,

Pi(p,q) = 2 9029 (A12)

WE dt



where &y (= wi(J) = @5(P,q)) is independent of time
t because the J are constant through all ¢ [Eq. (AT)].
The equations (A11) and (A12) tell us that even though
the motions look quite complicated in the old coordinate
system, they could be reformulated as simple decoupled
periodic orbits in the phase space.

If one tries to regularize a general Hamiltonian glob-
ally, one almost surely encounters the problem that the
(near-)commensurable conditions that an integer linear
combination of fundamental frequencies vanishes identi-
cally at a given order €”,

> mgwr < O(€7) (A13)

(ng is arbitrary integer), makes the corresponding
new Hamiltonian diverge and destroys invariants of
motion. (1) Tt is quite likely in many M-dimensional
systems that the near-commensurable conditions densely
distribute in the phase space, i.e., the occupation ratio of
the M-dimensional tori in the phase space 1s negligibly
small, and hence Eqs. (A11)-(A12) become meaningless.
Here, however, we consider only approximately regular
behavior in local regions, specifically saddles, where we
find that such difficulties of fully-developed chaos for the
full set of degrees of freedom only at quite high energies.

We first showed that, by monitoring the new action of
the kth mode Ji(p, q) along molecular dynamics (MD)
trajectories obeying equations of motion of the origi-
nal Hamiltonian H(p,q), one can detect whether the
g mode tends to maintain an invariant of motion. If
the Jx(p,q) and its associated wy(p,q) exhibit near-
constants of motion through a certain range in time and
locality, 1t implies that py and §; are approximately de-
coupled from the other modes, and represent the local
dynamics analytically. Those quantities associated with
a reactive mode exhibit such near-constants of motion
up to a moderately high energy in the region of a sad-
dle. Furthermore the dividing hypersurface, defined by
the condition that the reactive coordinate in the trans-
formed coordinates is zero, is almost free from recrossing
problems.

APPENDIX B: THE REGIONAL HAMILTONIAN

Despite its versatility, LCPT has not been ap-
plied to many-degrees of freedom (DOF) realistic
atomic/molecular systems. One of the two main diffi-
culties 1s how one could handle the analytical derivative
and integral calculations that appear successively in the
LCPT procedure. The other is the near-impossibility
of obtaining even moderately simple analytical expres-
sions to describe the accurate (e.g., ab initio) poten-
tial energy surfaces in full. As shown for a variety of
atomic/molecular clusters, the dynamical properties of

multidimensional Hamiltonian systems are strongly non-
uniform at low and moderate energies, depending on the
local topography of their potential energy surfaces. (8, 9)

We first expand the full 3N-DOF potential energy sur-
face about a chosen stationary point, i.e., minimum, sad-
dle, or higher rank saddle. By taking the zeroth or-
der Hamiltonian as a harmonic oscillator system, which
might include some negatively curved modes, 1.e., re-
active modes, we establish the higher-order perturba-
tion terms to consist of nonlinear, anharmonic couplings
which we may express in arbitrary combinations of coor-
dinates. Thus,

H:Ho—l—ie”Hn

(B1)
n=1
where
1
Ho=3 Z(p? +wid)), (B2)
J
ZE”Hn = EZCjleijQl (B3)
n=1 ikl
+ ¢ Y Cimmdi@s@igm + ., (B4)

JikLm

Here, q; and p; are the jth normal coordinate and its con-
Jjugate momentum, respectively; w; and Cjr, Clirim,...
are, respectively, the frequency of the jth mode, the cou-
pling coefficient among ¢;, ¢, and ¢; and that among
4;, @k, ¢, and ¢, and so forth. The frequency asso-
ciated with an unstable reactive mode F' and those of
the other stable modes B are pure-imaginary and real,
respectively. At any stationary point there are six zero-
frequency modes corresponding to the total translational
and infinitesimal rotational motions, and the normal co-
ordinates of the infinitesimal rotational motions appear
in the perturbation terms H,(q) (n > 0). The contri-
bution of the total translational motion is simply sepa-
rated. We make no more mention of this. If one deals
with a system whose total angular momentum is zero,
one could eliminate the contributions of the total rota-
tional motions from H,(q) (n > 0) by operating with
a suitable projection operator (10); at the stationary
point it corresponds to putting to zero each normal co-
ordinate and corresponding conjugate momentum repre-
senting the infinitesimal total rotational motion. For the
sake of simplicity we focus on a (3N-6)-DOTF Hamiltonian
system with total linear and angular momenta of zero, so
that the kinetic and potential energies are purely vibra-
tional. For such a zeroth-order Hamiltonian wy # 0 for
all k(=1,2,3,...,3N — 6(= M)), the associated action-
angle variables of the stable modes B (wp € & : real)
and the unstable mode F' (wp € < : imaginary) are
expressed as

J—i]{ dgp = L (78 4 upg (B5)
B_27T PB q3_2 wp “B9B |



Op = tan! ( b5 ) , (B6)
“wWBY4B
and

1

Jr = —1 d B7

r 2w " barrierpF . ( )
. 2
vt pPp 2

= — | 4 — B8

9 <|WF| |wF|qF) ’ ( )

Op = itanh™! <|Wi‘TQF) , wp = —|wpli. (BY)

Here the action associated with the reaction mode F,
having first been postulated in the semiclassical tran-
sition state theory, (17-1%) is purely imaginary and is
connected with the barrier penetration integral in the
semi-classical theory. Tt is easily verified (14) that any
such set of variables J and @ is canonical, including those
associated with the unbound mode F.

APPENDIX C: THE ALGEBRAIC
QUANTIZATION METHOD

For practical LCPT calculations of the above Hamil-
tonians, a quite efficient method, called “algebraic quan-
tization,” has been developed. (6, 7) This method first
transforms (p,q) in Egs. B2-B4 to (a*,a) by the cus-
tomary means:

1 1
o p— ] , = — — , C1
aj \/i(pk +iwkqr), ax ﬁ(m iwirgr),(C1)

which are expressed in terms of the old action variable,
the associated frequency Ji, wg, and time 7 obeying
Hamiltonian Hy as

G1(r) = T = e, (cy)
ak(r) = \/wkjke_iQk = \/wkjke_i(wkT-l_ﬁk). (03)

The cumbersome analytical calculations of Eqs. B4-B8
that appear in the LCPT calculations are then replaced
by simultaneous algebraic, symbolic operations, thanks
to the simple Poisson bracket rules for the (a*,a),

{a;a az} = {aja ak} =0,

where {} and ¢ denote Poisson bracket and Kronecker
delta, respectively. One simply substitutes (C1)-(C3)
into (B1), to set up the simultaneous algebraic equations,
which readily yield the desired dynamical quantities with
the help of (C4). (7)

Finally, we obtain new transformed physical quantities
A, ie., the new Hamiltonian H, and new action J, fre-
quency wg, momentum pg, and coordinate g of the kth
mode, in terms of the original p and q as

(C4)

{a;, ak} = iwkéjk

(C5)

In the present work, we analyze A up to a (finite) ¢’ order

(i=0,1,2):

Aith — Aith(p’ (I) — Z GHAH (p’ (I)

n=0

(C6)

where no (near-) commensurable conditions were encoun-
tered at these orders during our LCPT procedure. The
details of the computational recipe are given in (7).

To indicate the complexity of the transform, we show
the expressions for p1(p, q) and ¢1(p, q) up to first order
at saddle T of Arg(Here mode 1 is reactive and the others
are non-reactive). The contributions of the original p;
and ¢; in pi™(p, q) and i (p, q) are not necessarily large

and almost all modes contribute to p

i> 1.

Pt and (ﬁth(p, q) for

~0th

Py =0, (C?)

—1st __
P =

p1+ 0.103353p1q1 + 0.097266¢7ps
0.084426q1p1o + 0.079721q4p11 — 0.075768p1q10
— 0.070628p4q11 + 0.067259¢1p12 — 0.061966p1q12
0.057190¢sp10 + 0.056576gsp11 — 0.056558p7qs
0.051195¢10p12 — 0.048788pgq11 — 0.044909psq10
— 0.044499¢5p12 + 0.039476¢5p12 + 0.038653p5q12
— 0.038584q1ps — 0.036376p10g12 — 0.035646p2q12
0.035423p2g2 — 0.032806pgqs + 0.031813p3g3

— 0.031358¢1ps + 0.026383p7q7 + 0.025753p1g5
0.025277p1g> — 0.024068p11911 + 0.019803psgs
0.017695¢4ps — 0.017171pgqe + 0.016610¢2p10
— 0.014351pag1o + 0.010428ps5q5 — 0.008864p4qs
0.005637¢2p5 — 0.003872p2q5 — 0.003792p12q12
0.003657p4q4 — 0.002603p10g10 + 0.001701¢3ps
— 0.001423psq9,

+ + 1+ + + 1+

+ +

(C8)

~0th

q1 = q1, (Cg)

7t = g1+ 0.599212¢79s — 0.559687¢%,
0.412029p% 4 0.338508¢2 + 0.328906¢2

— 0.319091¢2 4 0.310549¢10g12 — 0.291435¢2
0.183270¢3 4 0.170034¢5¢10 + 0.162288p7ps
0.152283¢2 + 0.141216p2 + 0.136269¢4¢11
0.130785p2 4 0.128438¢sq11 + 0.126825p3
0.105180p% + 0.101029¢2 — 0.098218¢5q12
0.095949p%, — 0.090680¢7%, + 0.078946p3
0.075768¢1q10 + 0.072618¢4q5 — 0.068455p2
0.061966¢1412 + 0.059076p10p12 + 0.054028¢2912
— 0.053049p1p2 — 0.051677¢7 + 0.048960psp10

+

|+ +

+

+ +



— 0.046850¢%, + 0.041571p2 + 0.036248pap11

+

0.024569¢3 — 0.023307psp12 — 0.022347p1ps

0.014577p2 + 0.012340¢2g5 — 0.010375p7,

+ + + + +

(C10)

The new momenta and coordinates pi(p,q) and
7x (p, @) have the following forms respectively,

Z ij2n—1qm’

J
(I) — Zdeanm
J

where ¢; and d; denote the coefficient of the jth
term, n, m(> 0) are arbitrary integers, and q™ =

M
"t eyt M (O n =

pr(p,d) and gx(p,q) maintain time reversibility. The
units of py and g are €2/2 and m'/%c, respectively. As
we increase the order of LCPT to be evaluated, the total
number of the terms rapidly increases. For example, ~
450 for p?"d and ¢4

pr(p,a) = (C11)

(C12)

m) etc.  The new

APPENDIX D: REFORMULATION OF
TRANSITION STATE THEORY

In the cases that saddle crossing dynamics has ap-
proximate invariants of motion associated locally with
the reactive mode F' in a short time interval but long
enough to determine the final state of the saddle cross-
ings, the ¢r can be identified as a “good” reaction coordi-
nate. This is because there is no means or force returning
the system to the new dividing surface S(gr = 0) even
though the system may recross the original naive sur-
face S(¢gr = 0). The reformulated microcanonical (clas-
sical) transition state theory(TST) rate constant kgrsr
is obtained (7) as a thermal average of the one-way fluxes
j+(= qp(p,Q)h(gr(p, q))) across S(gr = 0) over micro-
canonical ensembles constructed over a range of energies

E.

karsT(E) = (j+)E
= (r(p, )0 [Gr(p, D] 1 [Gr (P, D])E
= /dfhdpl /NdeNdPN
x §[E—H(p,q)]
qF(p q) [7r (P, )] 2 [qF (P, )],

0.035207p4ps 4+ 0.034517p1p10 + 0.031050])6])11Where h(l‘) and (5( )

0.021104p1p12 + 0.015270pap12 — 0.015119p7%,

0.009008p2p10 + 0.007034psps + 0.003167¢sq0

(D1)

x), respectively, denote the Heaviside

0.025753¢195 — 0.025277¢192 + 0.025194¢2g10 function and Dirac’s delta function of #. The canonical

form is also formulated straightforwardly.

If no approximate invariant of motion exists in the sad-
dle region, kgrsr(FE) deviates from the (classically) ex-
act reaction rate constant k(FE). Therefore one can in-
troduce a new transmission coefficient k., the deviation
of the kgrsr(FE) from the k(E):

k’ = chk’GTST. (DQ)

We may use k. to estimate the barrier recrossing effect,
as a measure of the extent to which the quasi-invariants
of motion associated with the reactive mode, i.e., the
local action and its local frequency, cease to be approxi-
mate invariants. Their nonconstancy reflects the degree
of fully-developed chaos in which no invariant of motion
exists, if the vibrational energy relaxation is fast enough
to let us assume quasi-equilibration in the reactant’s po-
tential well.

In order to focus on how the recrossings over a given
dividing surface contribute to x., we estimate the time-
dependent quantities kM7 (¢; S(gi" = 0)) in terms of our
MD trajectories deﬁned by

Gt = 0)h |3 (0 )] )
(J+(t=0))e

where j(t = 0), and j; (¢ = 0), respectively, denote the
initial total, and initial positive fluxes crossing the ith or-
der LCPT d1V1d1ng surface S(7* (p, q) = 0). The origin
of time t 1s taken to be zero when the system trajectory
first crosses the given dividing surface. This equation
should also tell us how the vanishing of the approximate
invariants of motion of the reactive mode reflects on the
Ke.

kXD (15 5(q = 0)) = (D3)

APPENDIX E: DISTINCT CLASSES OF
DYNAMICS IN THE TRANSITION STATE

We found, with the analysis afforded by the minimal-
recrossing trajectories provided by the LCPT analysis,
that there are at least three distinct energy regions above
the saddle point energy that can be classified in terms of
the regularity of saddle-crossing dynamics. Let us now
articulate the distinctions among them.

Quasireqular region  All or almost all the degrees of
freedom of the system locally maintain approximate con-
stants of motion in the region of the transition state. The
saddle crossing dynamics from well to well is fully deter-
ministic, obeying M-analytical solutions (see Eqs. All-
A12) for systems of M degrees of freedom. The dynami-
cal correlation between incoming and outgoing trajecto-
ries from and to the transition state region is quite strong,
and the dimensionality of saddle crossings is essentially
one, corresponding to the reactive mode ¢p in the (P, q)



space. Barrier recrossing motions observed over a naive
dividing surface defined in the configuration space are
all rotated away to no-return single crossing motions
across a phase space dividing surface S(¢r(p,q) = 0).
If the vibrational energy relaxes fast enough to let us
assume quasi-equilibration in the wells, the initial con-
ditions (p(0), q(0)) of the system as it enters the tran-
sition state from either of the stable states can be sim-
ply sampled from microcanonical ensembles. One may
then evaluate the (classical) exact rate constant, free
from the recrossing problem. The staircase energy de-
pendence observed by Lovejoy et al. (15) for highly vi-
brationally excited ketene indicates that the transverse
vibrational modes might indeed be approximately invari-
ants of motion. (16) We classify such a range of energy,
in which the rate coefficient shows staircase structure, as
corresponding to this quasiregular region.

Intermediate, semi-chaotic region Due both to signif-
icant (near-)resonances and to strong anharmonic mode-
mode couplings emerging at these intermediate energies,
almost all the approximate invariants of motion disap-
pear, consequently inducing a topological change in dy-
namics from quasiregular to chaotic in the regions of sad-
dle crossings. However at least one approximate invariant
of motion survives during the saddle crossings, associated
with the reactive coordinate ¢p(p, q). This is due to the
fact that an arbitrary combination of modes cannot sat-
isfy the resonance conditions of Eq. A13 if one mode has
an imaginary frequency, the reactive mode in this case, is
included in the combination. The other frequencies asso-
ciated with bath modes fall on the real axis, orthogonal
to the imaginary axis in the complex w-plane. That is,

M
Z Tnkwk

k=1

> |wr| > O(") (E1)

for arbitrary integers ng with ng # 0, where X denotes
the combination including the reactive mode. This was
first pointed out by Hernandez and Miller. (13) In this
region the dynamical correlation between incoming and
outgoing trajectories to and from the transition state be-
comes weak (but non-zero!), and the saddle crossings’
dimensionality is ~ M — 1, excluding the one dimen-
sion of gp, in this region. If the associated imaginary
frequency wp(p,q) is approximately constant during a
saddle crossing as the action jp(p, q) is, the reaction co-
ordinate ¢r decouples from the Z-subspace composed of
the other bath-DOF, in which the system dynamics is
manifestly chaotic. The ¢r dynamics is then represented
analytically during saddle crossings, and a dividing sur-
face S(¢r(p,q) = 0) can still be extracted free from the
barrier recrossings, even for saddle crossings chaotic in
the bath modes. This class does not exist near potential
minima, but is inherent associated with the transition
state.

Stochastic (=fully-developed chaotic) region The sys-
tem becomes subject to considerable nonlinearities of the
potential energy surface at much higher energies, and

the convergence radius becomes negligibly small for the
LCPT near the fixed (saddle) point for the invariant of
motion associated with the reactive coordinate ¢p. In
this energy region, no approximate invariant of motion
can be expected to exist, even in the passage over the sad-
dle between wells. The saddle-crossing dynamics is en-
tirely stochastic, with dimensionality essentially equal to
the number of degrees of freedom of the system. Here it is
probably not be possible to extract a dividing surface free
from barrier recrossings. At these high energies above the
lowest, presumably (but not necessarily) first-rank sad-
dle, the system trajectories may pass over higher-rank
saddles of the potential energy surface. These provides
us with a new, untouched problem, i.e., what is the role of
resonance in the imaginary w-plane for the bifurcation?
(This even arises in the degenerate bending modes for
a linear transition state of a triatomic molecule.) With
this, we encounter one of the related open subjects in
statistical theories of many-DOF systems.
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