
Appendix� Overview of our methodology in
�Regularity and Non�recrossing Paths in Transition States of Chemical Reactions�

Tamiki Komatsuzaki and R� Stephen Berry
Department of Chemistry� The University of Chicago� Chicago� IL �����

�February �� �����

The crux of our method� Lie canonical perturbation
theory� abbreviated as LCPT� is a classical version of
Van Vleck perturbation theory� These theories a pri�
ori assume existence of M invariants of motion for the
M �dimensional Hamiltonian systems in question� It is
well known that with such methods� the new� trans�
formed Hamiltonian diverges if the system encounters
�near��resonances� and becomes meaningless� However�
we clarify in this work that LCPT is still powerful enough
to reveal an invariant manifold even if almost action vari�
ables fail to maintain constants of motion� Rather� the
method provides us with a new phase�space dividing sur�
face free from recrossing up to moderately high energy�
We brie�y describe our method to construct a model
Hamiltonian from any arbitrary autonomous Hamilto�
nian to which LCPT applies� We use an e�cient tech�
nique� so�called algebraic quantization� to carry out the
LCPT without any special mathematical manipulations
and achieve a reformulated �classical� transition state
theory by using the hyperbolic phase space orbit in the
sea of chaotic motions of the other stable modes� At the
end� we describe shortly three distinct levels of local dy�
namics in the transition state in terms of regularity of
the dynamics� which have not been addressed previously�

APPENDIX A� LIE CANONICAL
PERTURBATION THEORY �LCPT�

Canonical perturbation theories �� � transform �p�q�
to a new ��p� �q� coordinate system so as to make the
new Hamiltonian �H��p��q� as close to integrable as possi�
ble� Lie canonical perturbation theory �LCPT� ���� � is
the most sophisticated theory among them� applicable to
implementing higher�order perturbations and to treating
systems with many degrees of freedom� The LCPT is
based on Lie transforms� that is� the exponential of a Lie
operator induces a canonical transformation	 let Lw be
the Lie operator associated with a generating function w�

Lw � fw� g �A
�

where fg denotes the Poisson bracket� Then the trans�
formation of an autonomous Hamiltonian H to a new
Hamiltonian �H�

H�p�q� �� �H��p��q� � exp�Lw�H��p��q� �A��

is canonical� We letH be anM �dimensionalHamiltonian
expandable in � ��strength of the perturbation� where

the zeroth�order Hamiltonian H� is assumed to be inte�
grable� e�g�� a system of M harmonic oscillators� Such a
zero�order system is a function of action variables J only�
and does not depend on the conjugate angle variables��
so

H�p�q� �
X
n��

�nHn�p�q�� �A�

� H��J� �
X
n��

�nHn�J���� �A��

�
MX
k��

�kJk �
X
n��

�nHn�J���� �A��

where �k is the fundamental frequency of the kth mode
of H�� Assuming the new Hamiltonian �H and the gener�
ating function w are also expandable in �� we substitute
allH� �H� and w to Eq� A� and determine the new Hamil�
tonian� at each order in �� to be as a simple a form as
possible by eliminating its dependencies on the new an�
gle variables ��� �� � � � � � If the �H is obtained free from
the angle �� �at the order of the perturbative calculation
performed�	

�H��p��q� � �H��J� ��� � �H��J� �
X
n��

�n �Hn��J�� �A��

the new action and angle variables for the kth mode are
expressed as

d �Jk
dt

� ��Jk � �� �H��J�

� ��k
� �� �A��

�Jk � constant �k � 
� �� � � � ��M �� �A��

and

���k �
� �H��J�

� �Jk
� ��k��J� � constant� �A��

��k � ��k��J�t� �k� �A
��

where �k is the arbitrary initial phase factor of the kth
mode� From there� the equations of motion with respect
to the new coordinates �q and momenta �p are obtained
from the Hamiltonian equations of motion obeying �H �

d��qk�p�q�

dt�
� ���k�qk�p�q� � �� �A

�

and

�pk�p�q� �
�k

��k

d�qk�p�q�

dt
�A
��






where ��k�� ��k��J� � ��k��p��q�� is independent of time
t because the �J are constant through all t �Eq� �A����
The equations �A

� and �A
�� tell us that even though
the motions look quite complicated in the old coordinate
system� they could be reformulated as simple decoupled
periodic orbits in the phase space�
If one tries to regularize a general Hamiltonian glob�

ally� one almost surely encounters the problem that the
�near��commensurable conditions that an integer linear
combination of fundamental frequencies vanishes identi�
cally at a given order �n�

MX
k��

nk�k � O��n� �A
�

�nk is arbitrary integer�� makes the corresponding
new Hamiltonian diverge and destroys invariants of
motion� �� � It is quite likely in many M �dimensional
systems that the near�commensurable conditions densely
distribute in the phase space� i�e�� the occupation ratio of
the M �dimensional tori in the phase space is negligibly
small� and hence Eqs� �A

���A
�� become meaningless�
Here� however� we consider only approximately regular
behavior in local regions� speci�cally saddles� where we
�nd that such di�culties of fully�developed chaos for the
full set of degrees of freedom only at quite high energies�
We �rst showed that� by monitoring the new action of

the kth mode �Jk�p�q� along molecular dynamics �MD�
trajectories obeying equations of motion of the origi�
nal Hamiltonian H�p�q�� one can detect whether the
�qk mode tends to maintain an invariant of motion� If
the �Jk�p�q� and its associated ��k�p�q� exhibit near�
constants of motion through a certain range in time and
locality� it implies that �pk and �qk are approximately de�
coupled from the other modes� and represent the local
dynamics analytically� Those quantities associated with
a reactive mode exhibit such near�constants of motion
up to a moderately high energy in the region of a sad�
dle� Furthermore the dividing hypersurface� de�ned by
the condition that the reactive coordinate in the trans�
formed coordinates is zero� is almost free from recrossing
problems�

APPENDIX B� THE REGIONAL HAMILTONIAN

Despite its versatility� LCPT has not been ap�
plied to many�degrees of freedom �DOF� realistic
atomic�molecular systems� One of the two main di��
culties is how one could handle the analytical derivative
and integral calculations that appear successively in the
LCPT procedure� The other is the near�impossibility
of obtaining even moderately simple analytical expres�
sions to describe the accurate �e�g�� ab initio� poten�
tial energy surfaces in full� As shown for a variety of
atomic�molecular clusters� the dynamical properties of

multidimensional Hamiltonian systems are strongly non�
uniform at low and moderate energies� depending on the
local topography of their potential energy surfaces� �� � � �
We �rst expand the full N �DOF potential energy sur�

face about a chosen stationary point� i�e�� minimum� sad�
dle� or higher rank saddle� By taking the zeroth or�
der Hamiltonian as a harmonic oscillator system� which
might include some negatively curved modes� i�e�� re�
active modes� we establish the higher�order perturba�
tion terms to consist of nonlinear� anharmonic couplings
which we may express in arbitrary combinations of coor�
dinates� Thus�

H � H� �
�X
n��

�nHn �B
�

where

H� �



�

X
j

�p�j � ��j q
�
j �� �B��

�X
n��

�nHn � �
X
j�k�l

Cjklqjqkql �B�

� ��
X

j�k�l�m

Cjklmqjqkqlqm � � � � � �B��

Here� qj and pj are the jth normal coordinate and its con�
jugate momentum� respectively� �j and Cjkl� Cjklm����
are� respectively� the frequency of the jth mode� the cou�
pling coe�cient among qj� qk� and ql and that among
qj� qk� ql� and qm and so forth� The frequency asso�
ciated with an unstable reactive mode F and those of
the other stable modes B are pure�imaginary and real�
respectively� At any stationary point there are six zero�
frequency modes corresponding to the total translational
and in�nitesimal rotational motions� and the normal co�
ordinates of the in�nitesimal rotational motions appear
in the perturbation terms Hn�q� �n � ��� The contri�
bution of the total translational motion is simply sepa�
rated� We make no more mention of this� If one deals
with a system whose total angular momentum is zero�
one could eliminate the contributions of the total rota�
tional motions from Hn�q� �n � �� by operating with
a suitable projection operator ��� �� at the stationary
point it corresponds to putting to zero each normal co�
ordinate and corresponding conjugate momentum repre�
senting the in�nitesimal total rotational motion� For the
sake of simplicitywe focus on a �N ����DOF Hamiltonian
system with total linear and angular momenta of zero� so
that the kinetic and potential energies are purely vibra�
tional� For such a zeroth�order Hamiltonian �k �� � for
all k �� 
� �� � � � �� N � ���M ��� the associated action�
angle variables of the stable modes B ��B � � 	 real�
and the unstable mode F ��F � � 	 imaginary� are
expressed as

JB �



��

I
pBdqB �




�

�
p�B
�B

� �Bq
�
B

�
� �B��

�



�B � tan��
�

pB

�BqB

�
� �B��

and

JF �



��
Im

Z
barrier

pF dqF � �B��

�
i

�

�
p�F
j�F j � j�F jq�F

�
� �B��

�F � i tanh��
�

pF

j�F jqF

�
� �F � �j�F ji� �B��

Here the action associated with the reaction mode F �
having �rst been postulated in the semiclassical tran�
sition state theory� ������ � is purely imaginary and is
connected with the barrier penetration integral in the
semi�classical theory� It is easily veri�ed ��	 � that any
such set of variables J and� is canonical� including those
associated with the unbound mode F �

APPENDIX C� THE ALGEBRAIC
QUANTIZATION METHOD

For practical LCPT calculations of the above Hamil�
tonians� a quite e�cient method� called �algebraic quan�
tization�� has been developed� �
 � � � This method �rst
transforms �p�q� in Eqs� B��B� to �a�� a� by the cus�
tomary means	

a�k �

p
�
�pk� i�kqk�� ak �


p
�
�pk� i�kqk���C
�

which are expressed in terms of the old action variable�
the associated frequency Jk� �k� and time 	 obeying
Hamiltonian H� as

a�k�	 � �
p
�kJke

i�k �
p
�kJke

i��k���k�� �C��

ak�	 � �
p
�kJke

�i�k �
p
�kJke

�i��k���k�� �C�

The cumbersome analytical calculations of Eqs� B��B�
that appear in the LCPT calculations are then replaced
by simultaneous algebraic� symbolic operations� thanks
to the simple Poisson bracket rules for the �a�� a��

fa�j � a�kg � faj � akg � �� fa�j � akg � i�k
jk �C��

where fg and 
 denote Poisson bracket and Kronecker
delta� respectively� One simply substitutes �C
���C�
into �B
�� to set up the simultaneous algebraic equations�
which readily yield the desired dynamical quantities with
the help of �C��� �� �
Finally� we obtain new transformed physical quantities

�A� i�e�� the new Hamiltonian �H� and new action �Jk� fre�
quency ��k� momentum �pk� and coordinate �qk of the kth
mode� in terms of the original p and q as

�A � �A�p�q� �
X
n��

�n �An�p�q�� �C��

In the present work� we analyze �A up to a ��nite� �i order
�i���
���	

�Aith � �Aith�p�q� �
iX

n��

�n �An�p�q� �C��

where no �near�� commensurable conditions were encoun�
tered at these orders during our LCPT procedure� The
details of the computational recipe are given in �� ��
To indicate the complexity of the transform� we show

the expressions for �p��p�q� and �q��p�q� up to �rst order
at saddle I of Ar	�Here mode 
 is reactive and the others
are non�reactive�� The contributions of the original p�
and q� in �p

ith
� �p�q� and �qith� �p�q� are not necessarily large

and almost all modes contribute to �pith� and �qith� �p�q� for
i 	 
�

�p�th� � p�� �C��

�p�st� � p� � ��
��p�q� � ��������q
p�

� ��������q�p�� � �������
q�p�� � ��������p�q��

� ��������p�q�� � ��������q�p�� � ����
���p�q��

� �����
��qp�� � ��������q	p�� � ��������p
q�

� ����

��q��p�� � ��������p	q�� � ��������pq��

� ��������qp�� � �������q�p�� � ������pq��

� �������q�p� � ������p��q��� �������p�q��

� ������p�q� � �������p	q	 � ���
�
p�q�

� ���
��q�p � ������p
q
 � �������p�q

� ��������p�q� � ��������p��q��� ���
���p�q�

� ���
����q�p	 � ���
�
�
p�q� � ���
��
�q�p��

� ���
��
p�q�� � ���
����pq � ��������p�q	

� �������q�p � �������p�q � �������p��q��

� �������p�q� � �������p��q��� ����
��
q�p�

� ����
��p�q��

�C��

�q�th� � q�� �C��

�q�st� � q� � ������
�q
q� � ��������q���
� ���
����p��� ������q�
� �������q��
� ��
���
q�	� ��
����q��q�� � ����
��q��
� ��
����q��� ��
����qq�� � ��
�����p
p�

� ��
����q��� ��
�
�
�p��� ��
����q�q��

� ��
����p�	� ��
����q	q�� � ��
�����p��
� ��
��
��p�
� ��
�
���q�� ������
�qq��

� ��������p���� ��������q���� ��������p��
� ��������q�q�� � ������
�q�q	 � ��������p��
� ����
���q�q�� � ��������p��p�� � ��������q�q��

� �������p�p� � ����
���q�� � ��������pp��





� ��������q���� ����
��
p�� �������p�p��

� �������p�p	 � �����
�p�p�� � ���
���p	p��

� �������q�q � ��������q�q� � �����
��q�q��

� ��������q��� ������pp�� � �������p�p

� ����

��p�p�� � ���
����p�p�� � ���
�

�p���
� ���
����p��� ���
���q�q � ���
���p���
� ��������p�p�� � �������p�p � ����
��q�q�

� ����



p�p��

�C
��

The new momenta and coordinates �pk�p�q� and
�qk�p�q� have the following forms respectively�

�pk�p�q� �
X
j

cjp
�n��qm� �C

�

�qk�p�q� �
X
j

djp
�nqm� �C
��

where cj and dj denote the coe�cient of the jth
term� n� m�	 �� are arbitrary integers� and qm �

qm�

� qm�

� qm�

� 
 
 
 qmMM �
PM

j��mj � m� etc� The new

�pk�p�q� and �qk�p�q� maintain time reversibility� The
units of �pk and �qk are ���� and m����� respectively� As
we increase the order of LCPT to be evaluated� the total
number of the terms rapidly increases� For example� �
��� for �p�nd� and �q�nd� �

APPENDIX D� REFORMULATION OF
TRANSITION STATE THEORY

In the cases that saddle crossing dynamics has ap�
proximate invariants of motion associated locally with
the reactive mode F in a short time interval but long
enough to determine the �nal state of the saddle cross�
ings� the �qF can be identi�ed as a �good� reaction coordi�
nate� This is because there is no means or force returning
the system to the new dividing surface S��qF � �� even
though the system may recross the original naive sur�
face S�qF � ��� The reformulated microcanonical �clas�
sical� transition state theory�TST� rate constant kGTST
is obtained �� � as a thermal average of the one�way �uxes
j��� ��qF �p�q�h���qF �p�q��� across S��qF � �� over micro�
canonical ensembles constructed over a range of energies
E�

kGTST �E� � hj�iE
� h ��qF �p�q�
 ��qF �p�q��h ���qF �p�q��iE �
�

Z
�

dq�dp� � � �

Z
N

dqNdpN

� 
 �E �H�p�q��

��qF �p�q�
 ��qF �p�q��h � ��qF �p�q�� �

�D
�

where h�x� and 
�x�� respectively� denote the Heaviside
function and Dirac�s delta function of x� The canonical
form is also formulated straightforwardly�
If no approximate invariant of motion exists in the sad�

dle region� kGTST �E� deviates from the �classically� ex�
act reaction rate constant k�E�� Therefore one can in�
troduce a new transmission coe�cient �c� the deviation
of the kGTST �E� from the k�E�	

k � �ckGTST � �D��

We may use �c to estimate the barrier recrossing e ect�
as a measure of the extent to which the quasi�invariants
of motion associated with the reactive mode� i�e�� the
local action and its local frequency� cease to be approxi�
mate invariants� Their nonconstancy re�ects the degree
of fully�developed chaos in which no invariant of motion
exists� if the vibrational energy relaxation is fast enough
to let us assume quasi�equilibration in the reactant�s po�
tential well�
In order to focus on how the recrossings over a given

dividing surface contribute to �c� we estimate the time�
dependent quantities �MD

c �t�S��qithF � ��� in terms of our
MD trajectories de�ned by

�MD
c �t�S��qithF � ��� �

hj�t � ��h
h
��q
ith
F �p�q�

i
iE

hj��t � ��iE �D�

where j�t � ��� and j��t � ��� respectively� denote the
initial total� and initial positive �uxes crossing the ith or�
der LCPT dividing surface S��qithF �p�q� � ��� The origin
of time t is taken to be zero when the system trajectory
�rst crosses the given dividing surface� This equation
should also tell us how the vanishing of the approximate
invariants of motion of the reactive mode re�ects on the
�c�

APPENDIX E� DISTINCT CLASSES OF
DYNAMICS IN THE TRANSITION STATE

We found� with the analysis a orded by the minimal�
recrossing trajectories provided by the LCPT analysis�
that there are at least three distinct energy regions above
the saddle point energy that can be classi�ed in terms of
the regularity of saddle�crossing dynamics� Let us now
articulate the distinctions among them�

Quasiregular region All or almost all the degrees of
freedom of the system locally maintain approximate con�
stants of motion in the region of the transition state� The
saddle crossing dynamics from well to well is fully deter�
ministic� obeying M �analytical solutions �see Eqs� A

�
A
�� for systems of M degrees of freedom� The dynami�
cal correlation between incoming and outgoing trajecto�
ries from and to the transition state region is quite strong�
and the dimensionality of saddle crossings is essentially
one� corresponding to the reactive mode �qF in the ��p��q�

�



space� Barrier recrossing motions observed over a naive
dividing surface de�ned in the con�guration space are
all rotated away to no�return single crossing motions
across a phase space dividing surface S��qF �p�q� � ���
If the vibrational energy relaxes fast enough to let us
assume quasi�equilibration in the wells� the initial con�
ditions ��p���� �q���� of the system as it enters the tran�
sition state from either of the stable states can be sim�
ply sampled from microcanonical ensembles� One may
then evaluate the �classical� exact rate constant� free
from the recrossing problem� The staircase energy de�
pendence observed by Lovejoy et al� ��� � for highly vi�
brationally excited ketene indicates that the transverse
vibrational modes might indeed be approximately invari�
ants of motion� ��
 � We classify such a range of energy�
in which the rate coe�cient shows staircase structure� as
corresponding to this quasiregular region�

Intermediate� semi�chaotic region Due both to signif�
icant �near��resonances and to strong anharmonic mode�
mode couplings emerging at these intermediate energies�
almost all the approximate invariants of motion disap�
pear� consequently inducing a topological change in dy�
namics from quasiregular to chaotic in the regions of sad�
dle crossings� However at least one approximate invariant
of motion survives during the saddle crossings� associated
with the reactive coordinate �qF �p�q�� This is due to the
fact that an arbitrary combination of modes cannot sat�
isfy the resonance conditions of Eq� A
 if one mode has
an imaginary frequency� the reactive mode in this case� is
included in the combination� The other frequencies asso�
ciated with bath modes fall on the real axis� orthogonal
to the imaginary axis in the complex ��plane� That is������

MX
k��

ynk�k

����� 	 j�F j � O��n� �E
�

for arbitrary integers nk with nF �� �� where !y denotes
the combination including the reactive mode� This was
�rst pointed out by Hernandez and Miller� ��� � In this
region the dynamical correlation between incoming and
outgoing trajectories to and from the transition state be�
comes weak �but non�zero"�� and the saddle crossings�
dimensionality is  M � 
� excluding the one dimen�
sion of �qF � in this region� If the associated imaginary
frequency ��F �p�q� is approximately constant during a
saddle crossing as the action �JF �p�q� is� the reaction co�
ordinate �qF decouples from the Z�subspace composed of
the other bath�DOF� in which the system dynamics is
manifestly chaotic� The �qF dynamics is then represented
analytically during saddle crossings� and a dividing sur�
face S��qF �p�q� � �� can still be extracted free from the
barrier recrossings� even for saddle crossings chaotic in
the bath modes� This class does not exist near potential
minima� but is inherent associated with the transition
state�

Stochastic �fully�developed chaotic� region The sys�
tem becomes subject to considerable nonlinearities of the
potential energy surface at much higher energies� and

the convergence radius becomes negligibly small for the
LCPT near the �xed �saddle� point for the invariant of
motion associated with the reactive coordinate �qF � In
this energy region� no approximate invariant of motion
can be expected to exist� even in the passage over the sad�
dle between wells� The saddle�crossing dynamics is en�
tirely stochastic� with dimensionality essentially equal to
the number of degrees of freedom of the system� Here it is
probably not be possible to extract a dividing surface free
from barrier recrossings� At these high energies above the
lowest� presumably �but not necessarily� �rst�rank sad�
dle� the system trajectories may pass over higher�rank
saddles of the potential energy surface� These provides
us with a new� untouched problem� i�e�� what is the role of
resonance in the imaginary ��plane for the bifurcation#
�This even arises in the degenerate bending modes for
a linear transition state of a triatomic molecule�� With
this� we encounter one of the related open subjects in
statistical theories of many�DOF systems�
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